
Proceedings of the 5
th

 National Conference; INDIACom-2011

Computing For Nation Development, March 10 – 11, 2011

Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

Copy Right © INDIACom-2011 ISSN 0973-7529 ISBN 978-93-80544-00-7

Conceptual Dependency

Gurvinder Singh
1
, Ravleen Kohli

2
, Dilip Mujalde

3
, Piyush Pradhan

4
 and Priyanka Mehra

5

1,3,4,5
CIIT, Indore,

2
SRGPI, Indore

1
gurvinderengg@yahoomail.com

ABSTRACT

In modeling, it is usually important to identify, characterize,

and understand the impact of the dependencies that exist

between the entities in the model. This is vital at all levels of

modeling and in all domains. The concepts and approach

presented in this paper are applicable at all levels and in each

domain. We start by considering that there are many notations

in use for the specification of and analysis of models. While

some of these notations allow explicit specification of

dependencies, some include dependency only by implication.

For example, UML represents a simple dependency as a dotted

arrow between components. In the software engineering

domain, OSD (Open Software Description) is presently being

pushed by Microsoft as a standard for describing and

packaging software. While OSD and the literature surrounding

it are in agreement that dependency representation is

important, OSD simply represents dependencies by supplying a

list of other components that are required to be present before

a particular software component can be installed on a system.

Work has also been done in the natural language processing

area dealing with dependency analysis between words of a

sentence, and specific linguistic dependency types have been

identified, such as the dependency between a noun and a

determiner or the dependency between noun and verb.

However, these dependencies once again are limited to the

particular domain in question (i.e., linguistic dependency) and

explicit definitions of an abstract dependency are not

considered.

KEYWORDS

Dependency, Attribute, Entity

INTRODUCTION

Much of the present literature takes the definition of

dependency for granted and where definitions are occasionally

given, they vary widely. Some sources maintain that

dependencies are simply first-order logic formulae, or in

database terminology, constraints. Others insist that higher-

order logic is required to express dependencies. Some take a

probabilistic approach and express dependencies as conditional

probabilities between specified variables or look solely at

dependencies from a statistical viewpoint. Some sources take

the approach that a dependency is best modeled by the

client/server relationship, and then develop the definition of

dependency in client/server terms, while others specify types of

dependency such as structural and functional dependencies or

data and value dependencies. Keller, Blumenthal, and Kar

attempt a more in-depth characterization of dependencies and

define six different “dimensions” of dependency, and Prost also

takes a “type-based” approach to dependency analysis.

However, some of the dimensions given in for analyzing

dependencies are actually attributes of the computer system

under analysis. Once again, there is no clear delineation

between the dependencies itself, and the domain in which the

dependency exists. Mineau discusses the addition of functions

to and the treatment of functional dependencies in Conceptual

Graphs, but even Mineau does not address the explicit

definition of a dependency. Our approach to the definition of

dependency and the use of Conceptual Graphs as a dependency

language allows for a much more coherent and complete

description of dependencies at the general level and explicitly

delineates the characteristics of the dependency from any

domain limitations. We also expect the use of Conceptual

Graphs to allow more powerful analysis of the dependencies of

a given system. Our perspective comes from the Realist’s view

as defined by Hayes. We assume “a set can be a set of

anything” and that “the universe can be physical or abstract or

any mixture” in order to make our universe as general as

possible. Based upon this perspective, we then refer to an entity

as anything that can be a member of such a set, and therefore

can be anything we want to model. This can be an object, a

concept, an organization, or any other thing to be modeled. We

also make the assumption that the entities are not static. The

entities can change. At this point, we simply assume the

existence of something called change that happens to entities,

but we deliberately do not yet attempt to define change in order

that it, too, may be allowed to be as general as possible. We

understand that an entity may change for at least several and

possibly many reasons. The entity may have change as part of

its very nature (for example, try to model a 2-year-old child

without allowing for change). The entity may also be

influenced to change by something outside itself. This latter

type of change is of specific interest to us and it is upon this

that we base our understanding of dependency. From this

understanding, we assume that there are cases where the

“something outside itself” possibly or potentially influences the

entity to change. We ask the reader to accept our general

definitions for entity, change, and potential for change in the

interest of concentrating upon dependency. We also assume the

existence of a relation R between some number of entities,

expressed by R(A, B, C, D, . . .) where it can be said that the R

relationship exists between the entities A, B, C, D, etc. In the

Proceedings of the 5
th

 National Conference; INDIACom-2011

Copy Right © INDIACom-2011 ISSN 0973-7529 ISBN 978-93-80544-00-7

general case, we define a dependency as such a relation, D,

between some number of entities wherein a change to one of

the entities implies a potential change to the others. We can

therefore express such a general dependency as D(A, B, C, D, .

ncy is shown

in Figure 1. In order to emphasize the complexity of this most

general type of dependency (which may exist between many

entities), we refer to it as symbiosis. As an example of this

most general type of dependency, or symbiosis, we can

consider the relationship between the departments within a

corporation. It is easy to see that the engineering, accounting,

contracts, marketing, and facilities departments are dependent

upon each other. However, it is not at all easy to specify and

quantify the extent of such a dependency.

Figure1Graphical representation of most general form of a

dependency

As a first step in our analysis, we focus upon a much simpler

type of dependency, the case of a dependency between only

two entities, D(A, B). In the case where A depends upon B and

B depends upon A, this dependency can be seen as a bi-

directional relationship. We call this bi-directional dependency

interdependency. Given such an interdependency between two

entities, we can now separate the dependency D(A,B) into at

least two one-way, or unidirectional dependencies d1(A, B) and

d2(B, A). We can be sure that this is always the case, because

we have included “independent” in our type hierarchy for

dependencies (refer to Figure 4).

Figure2Bi-directional dependency, or interdependency,

between two entities

In the simplest case of a dependency, a unidirectional

dependency between two entities, d(A, B), we can say that A

depends upon B. If A depends upon B, then a change in B

implies a potential or possible change in A. As in Keller, et.

al.[12], we refer to A as the dependent and B as the antecedent.

This definition of the simplest form of a dependency is very

like the definition of dependency given in [1] and is depicted in

Figure 3.

Figure 3Graphical representation of the simplest dependency

Again, it is important to note that this definition of the simplest

case of dependency expresses a one-way direction for the

dependency. It is not only possible, but common that a bi-

directional dependency exists; and, given the definition of the

most general form of dependency above, it is also conceivable

to have such an interdependency demonstrated between N

entities where N>2.Our initial work is based upon the

decomposition of complex dependencies into unidirectional,

binary relations. The complex dependency can be broken into

some number of unidirectional dependencies. As described

above, it is easy to see that in the case of interdependency

between two entities, the bi-directional dependency can be

described using at least two one-way dependencies between the

two entities. We expect that in a case of symbiosis among N

entities, the symbiosis can be represented by at least2 (N

2)unidirectional dependencies. We use the term “at least” here

because there may be multiple types of dependency existing

between any two entities. For example, both an intermittent,

time-based dependency and a static structural dependency may

be involved in the interdependency. Even if the dependency is

of a single type, such as a functional dependency, it could

include several different and specific “needs” of the entities. In

that case, a separate unidirectional dependency could be

defined for each specific need. Our continuing research will

include a more in-depth investigation of this expectation.

MODEL

Now that we have defined both a general dependency and the

most simple dependency, we need to discover the

characteristics that are inherent in all dependencies and we

need to investigate the types of dependency that are possible.

Our research is focusing on the very ambitious attempt to

produce what might be called ontology of dependencies. This

includes both the identification of a set of attributes which

apply to every dependency and the development of a general

dependency type hierarchy based upon those attributes.

Attributes that describe a dependency

There are six attributes of dependency, which are represented

as orthogonal axes in a six dimensional dependency space

wherein each dependency can be graphed. Our initial set of

attributes, which are applicable to all dependencies, includes

two attributes from, criticality and strength. However we

believe that the other four attributes cited by , rather than being

Conceptual Dependency

Copy Right © INDIACom-2011 ISSN 0973-7529 ISBN 978-93-80544-00-7

associated with the dependency, would be more properly

represented as attributes associated with the system

components (the entities A and B) or with the system, itself.

For example, the “component type” cited is not an attribute of a

dependency as much as it is an attribute of the entity, A, being

modeled, and the attribute “dependency formalization” is

actually dependent upon the particular system in question. To

the two attributes we have taken from, we have added the

attributes of impact, sensitivity, stability, and need as important

to all dependencies. Also addresses the issue of “time”,

although it is not included in the six -dimensional dependency

space. This is very like the attribute we have named stability.

The following is the list of attributes of the dependencies:

Attributes of Dependency

1. Sensitivity (or fragility) – how vulnerable to compromise or

failure is this dependency? Possible values for this attribute are

Fragile, Moderate, and Robust.

2. Stability (like “time”) – a measure of the continuity of the

dependency’s vulnerability to compromise or failure

(sensitivity) over time. One-way of looking at stability is to ask

the question: “When is the dependency fragile?” Possible

values for this attribute are Extremely Stable, Infrequent,

Periodic, and Certain Defined Times only, etc.

3. Need – what “need” of entity A is fulfilled by entity B? This

can be expressed as a list of particular capabilities upon which

this dependency is based. Possible values for this attribute

include Authorization, Resources Provided, Testing, or at lower

levels could include Text Editing, Computation, Network

Access, File Save/Retrieval, etc.

4. Importance (or criticality) – what is the weight of this

dependency as a determinant of entity A’s success, or how

critical is this dependency to the goals and overall function of

entity A? Possible values for this attribute are: Not Applicable,

High, Medium, and Low.

5. Strength – a measure of the frequency of the need or the

importance of this dependency, from entity A’s viewpoint.

How often or how much does entity A rely upon this

dependency in any particular time period? One way of looking

at Strength is to ask the question: “How often does this

dependency’s importance or need come into play?” Possible

values of this attribute are Daily, Hourly, Yearly, etc. or a

numeric value representing how often the dependency is an

issue during a particular time period.

6. Impact – in what way is the entity’s function affected by

compromise or failure at this particular dependency? Possible

values for this attribute are: None, Mission Compromised,

Information Unreliable, Performance Degraded,

Corruption/Loss of Information/Communication.

This represents our initial attempt to identify the set of

attributes, which are applicable to all types of dependencies.

Using this initial set of attributes, we are able to determine an

initial version of a hierarchy of dependency types. We expect

that if it were possible to identify a complete set of such

attributes, that we should then be able to identify all possible

dependency types in our hierarchy.

Dependency type hierarchy.

Once a complete set of dependency attributes is identified, it

will then be possible to establish a type hierarchy, resembling a

lattice, based upon those attributes and their values. Using this

hierarchy, specific types of dependency are characterized and

related to each other, and dependency types can be chosen to be

applicable to particular domains. Eventually, it should be

possible to fully populate the dependency type hierarchy based

upon the attributes identified.

Figure 4 contains a portion of the dependency type hierarchy

identified so far. From the types shown in this structure, it is

now possible to analyze the dependencies discussed by each of

our sources and indicates where in the structure their particular

approach to dependency lies.

Several of our sources assume no more detail about a

dependency than that it is a directed arc between two entities.

Using Conceptual Graphs as a dependency language.

Given the definition of dependency above, it is now

straightforward to map dependencies into conceptual graphs.

First, the definition of the simplest dependency is encoded in

Conceptual Graph terms. Figure 3, depicting such a

dependency is already in Conceptual Graph form. From there,

the graph may be relationally expanded to include the

definition of the dependency using its attributes. This

conceptual graph is shown in Figure 5. The relation,

“dependency” has now been expanded into a graph defining a

concept of “Dependency” which is related to the previous

concepts of Dependent” and “Antecedent” and which is also

now associated with attributes characterizing the most general

dependency. Note that the conceptual graph representation

allows us to easily represent the most general case and also to

expand the general graph in order to represent more specific

information about the dependency as it becomes available, i.e.

the Conceptual Graph representation facilitates modeling at

multiple levels of detail simultaneously. This addresses one of

the most difficult problems in modeling, the efficient

representation of and processing of entities modeled at multiple

levels of fidelity. Using Conceptual Graphs, the scalability

problem becomes much less difficult and in some cases is

solved altogether.

Proceedings of the 5
th

 National Conference; INDIACom-2011

Copy Right © INDIACom-2011 ISSN 0973-7529 ISBN 978-93-80544-00-7

Figure 4Dependency type hierarchy

Figure 5 Relationally expanded dependency graph

For applications such as those in, that need no more knowledge

of the dependency than the direction of the relationship (or the

directed arc), the graph shown in Figure 3 need not be

expanded at all. Also note that if the parts of speech used in are

defined as subtypes of “Dependent” and “Antecedent”, then

restriction of the graph shown in Figure 3 allows the expression

of all the dependencies used by that source. As noted earlier,

focused upon dependencies between hardware and software

system components in a distributed system. All six dependency

attributes cited in [8] are vital to analysis of that domain. While

our dependency

attributes specifically include two attributes from [8], the issues

surrounding the other four must also be addressed. In order to

address the others, we first need to restrict the dependent and

antecedent to a subtype of “computer system component.” This

representation allows the information pertaining to the system

components to be put into attributes associated with those

concepts in order to leave the definition of the dependency

concept uncluttered. A possible definition of “computer system

component” which will include the information required by

[8] is shown in Figure 6.

Fig. 6. Computer system component definition

In this way, the two requirements for “component type” and

“component

activity” (which we have named “capabilities provided”) are

represented as

attributes of the components and thereby influence the analysis,

but are separated

from the dependency itself.

The dimension of “locality”[8] is more difficult to deal with.

But if we introduce the idea of dependency chains, as indeed

were introduced in [8], then a dependency can be defined

between entities A and E, d1(A, E) where the set of

dependencies, {d2(A, B), d3(B, C), d4(C, E)} form such a

dependency chain. This introduces a limited transitivity of

dependencies: given the possibility that d2, d3, and d4 can be

of different dependency types, it is very difficult to draw

conclusions about the nature of such transitivity without

examining the specific definitions of the dependency types.

However, if d2, d3, and d4 are identified as dependency types

that are indeed transitive, then the attribute of “locality” can

then be implemented by counting the “hops” on the fully

expanded dependency chain and including a weighting factor

or “importance” such that a dependency “hop” between a

software component and a hardware component is more

significant than one between two software components.

Dependency formalization” does not appear in our attribute list.

Keller et. al. define that particular dimension as “a metric

[signifying] how expensive and/or difficult to acquire and

identify this dependency,” particularly relating to the “degree it

can be determined automatically.” Although we understand

why this particular “dimension” is important given the domain

of focus, we again think it is better to separate this from the

attributes of the general dependency. In some systems a

dependency may be extremely simple to “determine

automatically” if UML descriptions of system components are

available, while an identical dependency may be extremely

difficult to identify “automatically” in a legacy system which

has little supporting documentation.

Conceptual Dependency

Copy Right © INDIACom-2011 ISSN 0973-7529 ISBN 978-93-80544-00-7

RELATED WORK

[1] describe a methodology that can integrate n database views

simultaneously. The methodology consists of transforming a

database view into an intermediate representation, based on the

conceptual dependency theory. The conceptual representations

corresponding to the views are then combined to form a

“global” representation, which is subsequently converted back

to a data model that represents the global, integrated schema.

Our methodology makes use of the semantic content of a

database view in the integration process, unlike other view

integration methodologies proposed in the literature. We show,

by examples, how this approach can eliminate multiple

restructuring of constituent views in the integration process

REFERENCES

[1]. Adam, N.R.; Gangopadhyay, A.;An N-ary view

integration method using conceptual dependencies

System Sciences, 1995. Proceedings of the Twenty-

Eighth Hawaii International Conference on Volume 3,

3-6 Jan. 1995 Page(s):391 - 397 vol.3

[2]. Moore, L.E.; O'Neal, M.B.;A semantic interpreter for a

transportable command language interface Applied

Computing, 1990., Proceedings of the 1990 Symposium

on 5-6 April 1990 Page(s):202 – 208

[3]. Nurcan, S.; Claudepierre, B.; Gmati, I.;Conceptual

dependencies between two connected IT domains:

Business/IS alignment and IT governance Research

Challenges in Information Science, 2008. RCIS 2008.

Second International Conference on 3-6 June 2008

Page(s):87 – 98

[4]. Chang, S.K.; Orefice, S.; Polese, G.; Baker, B.R.;

Deriving the meaning of iconic sentences for

augmentative communication Visual Languages, 1993.,

Proceedings 1993 IEEE Symposium on 24-27 Aug.

1993 Page(s):267 – 274

[5]. Aramaki, S.; Nagai, T.; Kawamura, M.; Yayoshi, K.;

Hatada, Y.; Tsuruoka, T.;A Robot Programming Based

on Frame Representation of Knowledge Computer and

Information Technology, 2007. CIT 2007. 7th IEEE

International Conference on 16-19 Oct. 2007

Page(s):903 – 908

[6]. Aramaki, S.; Nagai, T.; Kawamura, M.; Hatada, Y.;

Tsuruoka, T.;Human-Robot Interface by using frame

like knowledge base Automation Science and

Engineering, 2007. CASE 2007. IEEE International

Conference on 22-25 Sept. 2007 Page(s):729 – 734

[7]. Aramaki, S.; Nagai, T.; Yayoshi, K.; Tsuruoka, T.;

Kawamura, M.; Kurono, S The Generation method of A

Robot Task Program for multi-modal Human-Robot

Interface.; Industrial Technology, 2006. ICIT 2006.

IEEE International Conference on 15-17 Dec. 2006

Page(s):1109 – 1114

[8]. Kunrong Chen; Rajich, V.;RIPPLES: tool for change in

legacy software Software Maintenance, 2001.

Proceedings. IEEE International Conference on 7-9 Nov.

2001 Page(s):230 -239

[9]. A knowledge representation for the communication

between robots Morita, T.; Aramaki, S.; Kurono, S.;

Kagekawa, K.; Robot and Human Communication,

1993. Proceedings., 2
nd

IEEE International Workshop on

3-5 Nov. 1993 Page(s):308 -313

[10]. .Acquiring and managing knowledge using a

conceptual structures approach: introduction and

framework Berg-Cross, G.; Price, M.E.; Systems, Man

and Cybernetics, IEEE Transactions on Volume 19,

Issue 3, May-June 1989 Page(s):513 – 527

[11]. PHRAN-SPAN: A Natural Language Interface for

System Specifications Granacki, J.; Parker, A.C.; Design

Automation, 1987. 24th Conference on 28-1 June 1987

Page(s):416 – 422

[12]. The role of object-oriented techniques and multi-

agents in story understanding Chavez, N.R., Jr.; Hartley,

R.T.; Integration of Knowledge Intensive Multi-Agent

Systems, 2005. International Conference on April 18-21,

2005 Page(s):580 - 585

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3016
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3016
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=278
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=278
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=278
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4620134
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4620134
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4620134
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=467
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=467
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4385040
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4385040
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4385040
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4341639
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4341639
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4341639
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4237510
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4237510
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7668
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7668
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=2970
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=2970
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=21
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=21
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=1336
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10573
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10573
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9771
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9771

